Single-channel Cable Modulator CMS0021 - Compliant with DVB-C (EN 300 429); ITU J.83 Annexes A, B and C; DOCSIS 1.x, 2.0 and 3.0. - Scalable architecture supports multiple instances per FPGA. - Modulation accuracy > 45dB (MER). - On-chip or off-chip interleaving RAM. - Variable symbol-rate interpolation. - Software selectable channel filter. - AD9857/AD9957/AD9789 interface and autoprogramming support. - AD9516/ADF4350 PLL programming support. - Extension core available for SPI/ASI interface with integrated PCR TS re-stamping, NULL TS packet removal/filtering and NULL/PRBS TS packet insertion. - Seamless integration with Altera ASI megacore when using SPI/ASI extension core. - Optional input and output TS rate estimation registers. - Optional noise interference source - Modes that are not required may be removed with synthesis options to generate a compact, efficient design. - Designed for very efficient FPGA implementation without compromise to the targeting of gate array or standard cell structures such as Altera® HardCopy. - Supplied as a protected bitstream or netlist (Megacore® for Altera® FPGA targets). # Contact information **Commsonic Ltd.**St. Johns Innovation Centre Cowley Road Cambridge CB4 0WS England www.commsonic.com sales@commsonic.com tel. +44 1223 421845 fax +44 1223 421845 ## **Block Diagram** # **Detailed Description** The Commsonic CMS0021 Single-channel Cable Modulator encodes a transport stream for J83 or DVB-C. The resulting QAM-symbols are filtered and up-converted for output to the radio interface as a single I/Q sample stream for translation to the final RF frequency. Although most designs will implement only one of the cable standards, it is possible to synthesise the core to support any combination of standards in a single device. Multiple instances of CMS0021 may be used on an FPGA, sharing access to a single external RAM device. This would typically take the form of a fast SRAM (or possibly SDRAM through a suitable SDRAM controller). Multi-core implementations typically employ separate DACs for each core with the resulting modulated baseband or IF carriers up-converted to the assigned RF frequency bands and combined to produce the wideband cable transmission signal. A description of the processing steps follows: **Forward Error Correction.** The FEC is split into an 8-bit datapath for Annex A / C / DVB-C and a second 7-bit datapath for Annex B. The requirements differ to an extent that only the interleaver may be shared between them. **FEC: J.83 Annex A** + **C and DVB-C.** The FEC requirements of J83 Annex A, Annex C and DVB-C are all identical except for supported QAM sizes and the channel filter roll-off parameter α . This is a relatively simple FEC, using a scrambler to randomise the data stream for good spectral characteristics, a Reed-Solomon code allowing correction of up to eight byte errors per MPEG packet, and a convolutional interleaver to disperse burst errors over multiple RS codewords. **FEC: J.83 Annex B.** The FEC Annex B requires a more complex FEC. In addition to the techniques of scrambling, Reed-Solomon and interleaving used in Annex A, Annex B also includes a trellis code that complements the error-correcting capabilities of the RS code. **FIFO.** The QAM Modulator accepts the formatted input stream from the FEC. **Mapper.** The data passes through a FIFO into the mapper that selects the appropriate QAM mapping and constellation point. **Channel Filter.** The selected constellation point is up-sampled and shaped/interpolated by a rootraised cosine FIR filter that can be programmed for the different transition factors (alphas) as required by the supported cable standards. # **Detailed Description (Cont'd)** A resampling interpolation stage provides complex baseband I/Q samples at the desired DAC clock frequency that would normally be a factor of at least 4 times the highest symbol rate to be supported. **Frequency Translation.** The channel output signal is optionally up-converted to a low IF frequency. ### **Operation** The CMS0021 core provides software register settings, e.g. FEC mode and symbol rate. Further software registers are provided to define the IF frequency at the modulator output. When multiple cores are implemented within a single FPGA then each core may be configured **DAC Aperture Comp.** The output is further processed to provide a composite signal to drive compatible DAC devices. The CMS0021 can provide parallel complex I/Q signals to input to a pair of DACs, or an interpolating DAC device such as the AD9857, AD9957 or AD9789. Optionally the output can be selected as an IF to supply a single DAC. independently. This, for example, allows systems to transmit high-order QAM in the more reliable portions of the RF band while simultaneously transmitting low-order QAM on the less reliable frequencies. www.commsonic.com # **Principle I/O Description** | Register Bus Interface reg_address Register address select input. reg_chip_en Block select input for the CMS0021 register bank. reg-wr_en Write Enable Input for block registers. reg_wr_data 32-bit Write data input. reg_rd_data 32-bit Read data output. reg_irq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_dk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rd_req RAM read acknowledge input from RAM ram_rd_req RAM write request output ram_rd_ack RAM write acknowledge input Modulator Output Interface <th>Timelpie 1/ O Desc</th> <th></th> | Timelpie 1/ O Desc | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|--| | reg_chip_en Block select input for the CMS0021 register bank. reg-wr_en Write Enable Input for block registers. reg_wr_data 32-bit Write data input. reg_rd_data 32-bit Read data output. reg_irq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. Ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM write request output ram_wr_req RAM write request output ram_wr_req RAM read acknowledge input mam_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | Register Bus Interface | | | | reg-wr_en Write Enable Input for block registers. reg_wr_data 32-bit Write data input. reg_rd_data 32-bit Read data output. reg_lirq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Interleaved data output to RAM ram_rd_req RAM read request output ram_rd_req RAM write request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input modulator Output Interface dac_out_i 14-bit Transmit I complex output. 14-bit Transmit Q complex output. 14-bit multiplexed data to the AD9857 if used. | reg_address | Register address select input. | | | reg_wr_data 32-bit Write data input. reg_rd_data 32-bit Read data output. reg_rd_data 32-bit Read data output. reg_irq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream reference clock output. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | reg_chip_en | Block select input for the CMS0021 register bank. | | | reg_rd_data 32-bit Read data output. reg_riq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream reference clock output. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_req RAM write acknowledge input ram_wr_ack RAM read acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | reg-wr_en | Write Enable Input for block registers. | | | reg_irq Core Interrupt. Transport Stream Interface ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM write request output ram_wr_req RAM write request output ram_wr_req RAM write acknowledge input ram_wr_ack RAM read acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | reg_wr_data | 32-bit Write data input. | | | ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_req RAM write request output ram_dack RAM read acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | reg_rd_data | 32-bit Read data output. | | | ts_data 8-bit Transport Stream data input. ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input mam_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | reg_irq | Core Interrupt. | | | ts_data_valid Transport Stream data valid input. ts_data_sync Transport Stream data sync input. ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rd_areq RAM read request output ram_wr_req RAM write request output ram_wr_ack RAM write request output ram_rd_ack RAM write acknowledge input modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | Transport Stream Interface | | | | ts_data_sync ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data | 8-bit Transport Stream data input. | | | ts_data_rdy Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data_valid | Transport Stream data valid input. | | | ts_data_refclk Transport Stream reference clock output. ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_wr_ack RAM read acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data_sync | Transport Stream data sync input. | | | ts_data_clk Transport Stream clock input. Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data_rdy | Transport Stream path is ready for new byte. Data transferred when Ready and Valid are asserted together. | | | Interleaver external RAM Interface ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data_refclk | Transport Stream reference clock output. | | | ram_addr[] Active RAM read/write address output from interleaver (external RAM option) ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ts_data_clk | Transport Stream clock input. | | | ram_wdata[] Non-interleaved data output to RAM ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | Interleaver external RAM Interface | | | | ram_rdata[] Interleaved data input from RAM ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_addr[] | Active RAM read/write address output from interleaver (external RAM option) | | | ram_rd_req RAM read request output ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_wdata[] | Non-interleaved data output to RAM | | | ram_wr_req RAM write request output ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_rdata[] | Interleaved data input from RAM | | | ram_rd_ack RAM read acknowledge input ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_rd_req | RAM read request output | | | ram_wr_ack RAM write acknowledge input Modulator Output Interface dac_out_i | ram_wr_req | RAM write request output | | | Modulator Output Interface dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_rd_ack | RAM read acknowledge input | | | dac_out_i 14-bit Transmit I complex output or IF output in IF mode. dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | ram_wr_ack | RAM write acknowledge input | | | dac_out_q 14-bit Transmit Q complex output. ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | Modulator Output Interface | | | | ad9857_txdata 14-bit multiplexed data to the AD9857 if used. | dac_out_i | 14-bit Transmit I complex output or IF output in IF mode. | | | · · · · · · · · · · · · · · · · · · · | dac_out_q | 14-bit Transmit Q complex output. | | | ad9857_txenable Controls the interface timing to the AD9857 if used. | ad9857_txdata | 14-bit multiplexed data to the AD9857 if used. | | | | ad9857_txenable | Controls the interface timing to the AD9857 if used. | | www.commsonic.com # **Principle I/O Description (Cont'd)** | Others | | | |--------------|--------------------------------------|--| | clock | Clock input. | | | ad9857_pdclk | AD9857 Clock. | | | reset_n | Asynchronous active-low reset input. | | # **Transport Stream Interface** #### Standard TS interface: The standard TS interface supplied uses a ready/valid handshake mechanism to allow data to be pulled through the modulator processing chain based on the on-air symbol rate. This requires the TS data source to be stalled when the modulator core is busy. ### **PCR re-stamping TS interface:** In certain applications it may be that the input stream from the transport multiplexer is provided at a fixed rate and will not support the standard TS interface handshake mechanism and consequently some form of rate adaption is required. The TS PCR restamping extension core provides a simpler TS interface (compatible with SPI or ASI) to allow data to be input at any rate. The core will be pad the input TS stream with NULL TS packets as required and perform any PCR adjustment. When the PCR restamping extension core is used, an output signal, ts_data_refclk is provided that indicates the necessary 188-byte TS byterate to satisfy the on-air requirements. # **Memory Requirements** | Mode | RAM (kBytes) | |--------------------------------|--------------| | J83 a/c
DVB-C | 2·4 | | J83b (short)
DOCSIS 1.1/2.0 | 8 | | J83b (extended)
DOCSIS 3.0 | 64 | The principle use of RAM within the core is for the FEC interleaving function. Internal FPGA memory is adequate for many applications, but prohibitive for the extended Annex B interleaving modes where the use of external RAM can lead to a significant reduction in system cost. #### **Internal RAM** The Internal RAM uses FPGA SRAM. Multiple cores may time-share a single RAM using a fixed access sequence, or *round-robin* polling. Up to 24 channels of Annex A or eight channels of Annex B (DOCSIS 1.1/2.0) may be implemented using a single 64kbyte MRAM found on the Altera Stratix devices. #### **External RAM** The External RAM interleaver implements an arbitrated-burst RAM interface. This allows several cores to share a single off-chip SRAM or SDRAM (using a suitable controller). # **Clock Requirements** #### **Modulation** The primary clock-rate requirement for the core is a minimum 4 system-clocks per symbol. A typical (7Msps) DVB-C core would require a master clock in excess of: $4 \times 7(Max symbol-rate) = 28MHz.$ Similarly, to provide J83B (5·35Msps) 256QAM requires a master clock frequency in excess of 22MHz. ## **DAC** output interface The DAC output interface normally operates at the master clock frequency (e.g. 28MHz), but this is likely to be too coarse for good output performance. Consequently, it is advisable to clock the core and DAC as fast as reasonably possible within the target technology. www.commsonic.com # **Register Interface** A simple 32-bit register-programming interface is provided. The register core is intended to be interfaced to whatever host interface is appropriate for the application (e.g. I²C, 8-bit, big-endian, little-endian, etc). The register-core can be interface directly with the Altera SOPC builder via the Avalon bus using a zero wait-state configuration. An active-high interrupt line is also available. ### **Register read access:** ### **Register write access:** # Altera® Megacore® www.commsonic.com The Single-channel Cable Modulator core provides a number of parameters that can be modified to provide an optimal solution for the targeted technology and/or application. These parameters are available for synthesis time modification using the Megawizard tool within the Altera® Quartus®II software. #### **EVALUATION** #### **About Commsonic:** Commsonic is an IP and design services company that specialises in the development of ASIC, FPGA, DSP and board-level sub-systems for applications in wireless and wireline communications. Our expertise is primarily in the gate- and power-efficient implementation of physical-layer (PHY) functions such as modulation, demodulation and channel coding, but we have extensive experience with all of the major elements of a modern baseband 'core' including medium access control (MAC), voiceband DSP, mixed-signal interfaces and embedded CPU and software. Our services are available on a turn-key basis but they are usually provided as part of a support package attached to members of our expanding family of licensable IP cores. Commsonic's IP spans the major Standards for cable, satellite and terrestrial digital TV transmission and includes high-performance, adaptable, single-carrier (QAM) and multi-carrier (COFDM) modulator and demodulator solutions for DVB-S/DSNG/S2, DVB-CID, ATSC-8VSB, ISDB-T, DVB-C/J.83/A/B/C, DVB-T/H and DVB-T2. Commsonic's customers are typically semiconductor vendors and manufacturers of broadband transceiver equipment that demand leading-edge Standards-based or proprietary PHY solutions but don't have the internal resources necessary to get their products to market soon enough. Commsonic Ltd. St. Johns Innovation Centre Cowley Road Cambridge CB4 0WS England www.commsonic.com sales@commsonic.com tel. +44 1223 421845 fax +44 1223 421845